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Abstract 

Based on the threshold model of Watts, the effect on cascade dynamics induced by temporal shuffling according to assortative structure 

was investigated in this paper. Two assortative rewiring schemes were introduced and explored, by considering the topological 

parameter of nodal degree and the average degree of nodal neighbors. Temporal behaviors are generated by edge breaking and rewiring, 

according to the assortativity coefficient of links. Analysis shows that the trap region on cascade dynamics identified by edge 

assortativity based on degree of the neighbors is better than the nodal degree-based one. The correctness of the analysis is validated 

with simulations on scale-free module networks. 
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1 Introduction 

 

With the increasing demand of technical application and 

social interaction, technology and social networks have 

been becoming more and more complex and 

interdependent. Individuals in such networks prefer to give 

consideration to every aspect of the information collected 

from different ways, for their own decisions. On one hand, 

it is still a comprehensive and complex task in theoretical 

research to capture the human behavior in the cascade 

modeling due to the different evaluation criteria. On the 

other hand, it is still a tough job to find a model that can 

express the topology of social networks reasonably and 

precisely. Therefore, it is meaningful to find a generalized 

way to capture the priority of human behavior in the 

adoption cascading process on the social network [1]. The 

discipline mentioned above has not been widely 

researched until the emergence of the well-known cascade 

model introduced by Watts [2]. In threshold model of 

watts, some assumptions referred to are as follows: an 

innocent node became an informed and spreading one 

when the proportion of its adopted friends exceeded the 

threshold; each node contacted with all of its neighbors in 

one time step, and to every neighbor, the probability of 

contact is equal. Under these assumptions, the bigger the 

value of degree is, the more neighbors in adoption state are 

needed for the state change from innocent to adopted state 

on that specific node. Therefore, the probability that 

information cascading between nodes depends on two 

constrained relationships: nodes with high degree are easy 

to contact information, but hard to change their state [3-5]. 

These two simple elements give rise to a rich dynamics 
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behavior that also inspires wide interest in network 

community. 

In basic Watts’ threshold model, it assumes that people 

contact and perceive with all their neighbors in a 

consequent way. However, due to various social or 

technical reasons, an individual always treats information 

from different sources with different priorities, and almost 

in a discrete way. The discrete way means a node will not 

contact with all of its neighbors in each time step, even the 

node is free. The event-driven contact is a common 

example, and widely exists in human interaction, wireless 

sensor networks and technical networks. The sparseness in 

contacting behavior are studied as burstiness in temporal 

network in related research community [6-9]. 

To capture the temporal property mentioned above, 

temporal networks are proposed and widely researched in 

cascade modeling. By considering the time-dependent 

interactions within the networks of real-world, the author 

in reference [6] have encoded two real temporal data， 

City ware project and Enron email community, into 

graphs. They analyzed individuals’ link numbers, 

appearing times and active time sequences under three 

different temporal measurement, and obtained some 

surprising and interesting results, for example, high-degree 

individuals have a lower ability of finding the route of 

information propagation, which causes that they are 

relatively slower when propagating information through 

the network. However, these two communication data 

exhibit a striking difference in terms of some temporal 

measurements, and specific analysis of concrete networks 

is needed to find their temporal characteristics hidden in 

the data. A kind of simple and generalized model is still 

absent. In most of previous research, temporal networks 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 116-121 Zheng Yi, Liu Fang  

117 

 

were built based on real event data. However, in the 

complex networks with very lager scale, it’s hard to record 

and establish every user’s contact event sequence in a long 

time duration. For example, when rumor spreads on 

twitter, it’s hard to record the time stamp of every online 

communicate behavior for all user. And the structure of 

many temporal networks are not correspond perfectly with 

the artificial network models, such as small-world graph, 

scale-free networks, thus increasing the difficulty to 

examine the dynamic variance to determine the factors that 

may have caused it. To solve the problem, some models 

are proposed recently.  

In reference [8], four null models have been generated 

for exploring the temporal correlations. According to the 

structure of static networks and the characteristics of 

human behavior, shuffling of event sequence between 

edges to destroy the correlation of temporal event and 

weight-topology of the collected temporal data, which 

including the call, SMS, Email and conference networks. 

In reference [9], random time shuffle model and random 

offset model were analyzed, in the former model, event 

time stamp are random shuffled on every node, and the 

latter shifted the initial event sequence in each node with a 

various time delay. Both of the models mentioned above 

have provided a framework to explore the dynamic effect 

induced by some focused temporal and topological 

correlations, with destroying other correlations between 

time sequences and between links at the same time. 

The cluster made by nodes with high-degree and the 

sparse links between clusters are the trap regions for 

cascade dynamics, which have been discovered in 

previous research papers. However, the researches 

specialized in this theme on temporal networks with 

excluding other elements is not common. In this paper, we 

resolved this problem into simple elements as follows: 

first, we built a module network follows scale-free degree 

distribution as the static network platform, by using the 

method proposed by Yan [10], in which the numbers of 

intra- and inter-cluster links are adjustable. Second, a 

random event sequence is generated and assigned to links, 

with number of events evenly distributed in a set of 

number [1, 4], and the memory window model is used to 

highlight the effect of assortative links on cascade 

dynamics. Third, a new breaking and rewiring scheme is 

proposed based on the assortativity of the degree of 

neighbors of the node, which means a node with high 

average degree of its neighbors has high probability to 

break the link with its low-degree neighbor and rewire with 

a high-degree node, and vice versa. The effect on dynamics 

induced by this assortativity are compared with the 

traditional degree-based assortative mating, with various 

memory window length and threshold value. The 

parameters of static networks, such as global population, 

the clustering coefficient and initial seed size, which play 

an important role in cascades, are fixed. The discussion of 

the effect of these elements are not given here due to the 

main purpose of our work is focused on the temporal 

network. 

2 Models 

 

In our work, binary decisions framework was used to 

explore the effect of our proposed assortivity scheme on 

module network. The binary decisions with externalities is 

a simple but widely accepted model in research fields of 

cultural fashions, collective synchronization, the diffusion 

of new invention and product, and rumors [1]. In binary 

state dynamics, there are only two opponent choices for 

individuals, and the way to make a decision depends on the 

contest of different choices made by their neighbors. The 

model corresponds to the scene where individuals do not 

have sufficient information for decision, then they have to 

form the reference by the inclination of their neighbors. 
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where   denotes nodal state, state 1 represents the state 

of being adopted or infected, and 0 represents the state of 

being innocent or susceptive;   denotes threshold of 

adoption, Г( )i  denotes neighbors’ set of node i. 

For the temporal network, the bursty nature of human 

behavior needs to be considered, and randomized event 

sequences are assigned to links. The original Watts’ model 

only considers the effect on dynamics induced by 

topological property of the network, and such graphs 

without time-event behaviour are refered to as static 

networks [2]. To capture the common property of human 

behavior, there many models proposed to explore the 

correlation between topology and event sequence. Four 

null models are proposed by authors of refenrence [8], in 

which some correlations are retained and others are 

destroyed by shuffling the event sequence among links 

with different correlation criteria, for example, the same 

degree, the same event number, etc. The null models give 

us a good platform for further research. Karimi’ model [7] 

considered the accumulative effect of nodal contacts 

within a memory window, that is to say, contacts from a 

singal node enables a innocent node to become a adopted 

one, if the window is long enough and nodal degree is very 

low. When these conditions are reached, memory window 

model actually discards the effect of topology [9]. 
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In our work, two measures are adopted to ensure the 

temporal property: first, random event sequences are 

generated and assigned to links. The max event number 

evenly distributed on [1,4], for example, (0 0 1 1 0 0 0 1 0 

1) is an event sequence with 4 event number in 10 time 

steps; second, memory window model are used to amplify 

the effect of our proposed rewiring and shuffling scheme. 

We designed two rewiring strategies: the neighbor-

based assortativity scheme and degree-based assortativity 

scheme. The first scheme compares the ratio of degree of 
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the two end nodes to the sum of the degree of their 

neighbors, while the second one uses the degree of nodes 

to judge the edge assortativity. The details are as follows: 
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where   is a nonnegative constant number, acts as an 

adjustment parameter, Гi
 denotes the neighbors’ set of 

node i，and 
ij Г , i and j are end nodes of the link. F(ji) 

denotes the level of absolute deviation of the degree of 

node j compared with other neighbors. 

( , ) ( , ) ( , )Q i j F i j F j i  , (4) 

where Q is the judgment measurement for neighbor 

assortativity, by using AND operation. When Q is true, the 

edge (i,j) is defined as assortative link. 

In degree-based model, the assortativity denoted by 

nodal degree is widely researched in cascade models. The 

aasortativity is measured as the correlation between two 

nodes [11]. The measurement of assortativity of modal 

degree is as follows: 

'

' ( '/ k)NN

k

k k P k , (5) 

where N is the population of the graph, P(k’/k) denots the 

probability that a node with degree k has a neighbor with 

degree k’, kNN defines the correlation between a node with 

k degree with the average degree of its neighbors.If kNN is 

an ascending curve with k increases, then the graph is 

assortative. 

In context of trap region detecting, we made a simple 

method for judging edge assortativity for nodal degree: 
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where   is a nonnegative constant number, acts as an 

adjustment parameter, ki and kj are the degree of the 

endnodes. 

An example of detecting of trap regions in cascade 

model is shown in Figure 1. In Figure 1a, edge (i ,j) is an 

obstacle for propagation to pass through, even nodes in one 

side are all occupied, the cascade still have hard path to 

reach other side because of the high degree of the node i 

and j. This trap can be detected by both schemes: first, 

node i and j both have high degree. The edge linked them 

is found as an assortative edge under 0.3  . Second, 

both node i and j are friends with high degree to each other, 

with other friends having lower degree, edge (i,j) is an 

assortative link under the neighbor assortativity criterion 

with 0.3  . While all other edges are not assortative 

links under these two value in both scheme; In Figure 1b, 

node i and j are friends with low degree to each other, with 

other friends having higher degree, edge (i,j) acts as a 

bridge linked two cluster regions. The cascade is still hard 

to be disseminated from one side to other side. The trap in 

here can be detected by neighbor assortativity criterion but 

degree assortativity one, because the latter cannot tell the 

difference of Figures 1b and 1c .And in Figure 1c, there is 

no trap for cascade in graph. 
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FIGURE 1 An example of trap region (a) the trap caused by edge (i,j), 

which can be detected by degree assortativity and neighbor assortativity. 
(b), (c) a trap found in (b), while not in (c), which can be detected by 

neighbor assortativity scheme only 

To validate the reasonable and effective of our 

proposed method for trap detecting, we generated a 

temporal network with breaking and rewiring behavior. 

The breaking and rewiring are integrated into temporal 

behaviors with steps as shown in Figure 2: The random 

event sequence on edge (A, B) is generated with time 

window length 12   and event number equals 3. Then at 

current simulation time step t, if edge (A, B) is detected as 

an assortative link, we break the edge and rewire node A 

with node C and node B with D, while node C and D are 

end nodes of an random chosen edge. After that, the event 

sequence shuffling is performed according to the average 

degree of the node pair. If node A and C have higher mean 

degree, then event sequence with more event is given to 

the edge linked them. The event sequences are right shifted 

with t  steps before inheriting, while mod( , )t t   , and 

2t   in Figure 2. The shifting in here is working for 

destroying the event-event correlation, inspired by the 

method in reference [9]. 

A B C D

A C B D
 

FIGURE 2 An example of breaking the assortative edge and rewiring 
with a random chosen edge 

Our cascade model with shuffling is as follows: First, 

a scale-free module network is constructed with 

randomized event sequence assigned to every link at begin. 

All initial states are assigned to nodes in whole graph with 

a fraction of nodes chosen to be seeds. Second, in each 

time step, function Q of all edges is computed. If Q of a 
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random chosen edge are true, and the random number 

generated here less than shuffling threshold λ (λ∈[0,1]), 

then shuffling is performed by breaking and rewiring as 

method mentioned above, with event sequence transferred 

from old edges to new links . Third, updating the state of 

all nodes according to the threshold rule of watts, 

combined with the active state of each link. Fourth, 

repeated step second and step third until the cascade 

process ended. 

 

3 Results 

 

In our cascade model, the degree distribution and 

connectedness are maintained and only assortativity 

correlation added, which made the simulation results 

reasonable for explore the effect of assortative links on 

cascades [8,12]. The reason for using scale-free module 

network as our original graph is the heterogeneous nature 

of degree and the adjustable community strength in its 

structure. Scale-free property is defined as the degree 

distribution in network follows a power law. For the 

continually increasing new nodes in the network are prone 

to connect with the node that has larger connectivity. The 

module networks with adjustable community strength are 

generated by model proposed by Yan as follows [10]: first, 

build c isolated cores，with a number of nodes are placed 

and linked with each other in each core, thus totally g 

complete graph are generated, g is the number of 

communities in whole network; Second, add a new node 

to each core with m edges linking with existing nodes. And 

n edges are linked with the nodes in same community, l=m-

n edges are inter-community. By this way, isolated 

communities generated in first step are connected; the 

adding and growing process is performed until the whole 

population gets N. In the growth process, new node always 

links existing nodes following the preferential attachment 

rule, thus the power law property of the degree distribution 

is guaranteed. By changing the ratio of intra- and inter-

community edges, the community strength Q is controlled. 

In our work, a simple parameter c is used for capture the 

level of dense links intra-community and sparse links 

inter-community: 

2
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where c is the number of the modules, L is the overall total 

number of edges, ls is the total number of edges in the 

module, ds is cumulative sum for the node degree within 

the module. 

n
c

m
 . (8) 

In this section, we investigate our proposed shuffling 

strategies in a scale-free module network with population 

N=104, fraction of initial seeds in whole population is 

ρ=5×10-3. The uniform cascade threshold is R=0.16 and 

length of memory window is τ=8. The results are averaged 

over 10 realizations with a randomized event sequence 

assigned to every link. In our work, a high level of initial 

seeds size is used for highlighting the effect on cascade 

size induced by our shuffling scheme t. The population of 

graph, degree distribution, cluster structure and initial 

seeds sizes all play important roles on final cascade sizes. 

This discipline is verified by previous researches and our 

simulation results. The effect on cascade dynamics 

induced by ingredients mentioned above are not discussed 

here. The main purpose of this paper is to find the 

variations in cascade dynamics induced by different 

shuffling scheme, and the cooperation effect induced by 

degree and shuffling is discussed. 

 

 
FIGURE 3 Average fraction of adopted nodes ρ versus community strength c under three different mean degree of the network, and with two 

schemes: neighbor assortivity rewiring and shuffling (nRS) and degree assortivity rewiring and shuffling (dRS) 
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Figure 3 displays the result caused by different 

assortativity scheme combined with various community 

strength on cascade size ρ. It is clear that average fraction 

of adopted nodes increased with the c in the interval [0.6, 

0.9], which is a counterintuitive phenomenon. That means, 

with the decreasing of inter-community edges, and the 

increasing of intra-community edges, there are more dense 

links in community and sparse links between communities. 

Results in Figure 3 show that there existed a critical point 

in interval [0.9,0.93]c , below which the increasing of c 

promoted the level of cascade, and above which the 

increasing of c stunted the cascade. It is reasonable to 

conclude that the sparse links between communities are 

not the more the better, there exists a minimize number for 

these links to satisfy the network connectivity and 

maximizing the cascading level. The rewiring and 

shuffling scheme according to the assortativity of degree 

of neighbors has the stronger promotion effect on cascade 

than the nodal degree assortativity one, under all 

conditions. 

 

 
FIGURE 4 Average fraction of adopted nodes ρ versus mean degree k, 

with three breaking and rewiring scheme: none shuffling (diamond), 

degree-based rewiring only (▼), neighbors-based rewiring only (▲), 
degree-based rewiring and shuffling (circle), and neighbor-based 

rewiring and shuffling (square). 

 

The change law of prevalence level of cascade under 

the effect of mean degree combined with shuffling is 

explored in Figure 4. The first regular pattern is that the 

shuffling action made the curve fell in a series of cascades 

down that is deferent with the vertical drop in curve of 

none shuffling one. The critical point of degree has right 

shifted due to the effect of rewiring and shuffling, degree 

9 for none shuffling process, degree 10 for rewiring only 

process and degree 11 for rewiring and shuffling process, 

which shown the promotion effect on the cascading level. 

Under the same conditions about cumulative effect 

induced by memory window and shuffling effect, the 

power to find and destroy trap links of method based on 

neighbor assortativity is still stronger than the degree one. 
 

 
FIGURE 5 Average fraction of adopted nodes ρ(t) acts as the function 

of time step T, with three breaking and rewiring scheme: none shuffling 
(diamond), degree-based rewiring and shuffling (square) and neighbor-

based rewiring and shuffling (circle ). 

In Figure 5, the change rule curves of average fraction 

of adopted nodes which change along with variation of 

time, under the effect of three scheme, are investigated. 

With the rewiring action, the trap region have been 

destroyed which speeded the spreading up on early stage. 

At the late stage before hitting fully cascading, the 

acceleration is maintained in nRS, while slowing down in 

dRS. 

The results shown in simulation completely agree with 

the analysis of our model. The cascade level is very 

sensitive to the mean degree on the scale-free network. 

With destroying the trap region by rewiring and shuffling, 

the sudden drop happened on critical point is changed to a 

sloped changing, which show the reduced sensitivity to 

high degree. 

 

4 Conclusion 

 

We investigated the influence of the effect by edge 

rewiring and event shuffling on global cascade accordng 

to the assortativity. Our proposed method can be argued to 

find the trp link better than the degree one, due to that the 

design of neighbor assortativity is applicable to search 

more wide area. In particular, the reinforcing effect on 

links inter-cluster in a module structure network induced 

by our method is recovered as special cases. 

In this paper we define the assortativity of an edge, 

which are the relative similar degree of node pairs in 

tradition degree assortativity scheme and the same role 

compared with other neighbors in neighbor assortativity 

scheme. Trap links are founded if their end nodes plays 

same role compared with neighbors of each other in the 

latter model, and the definition of their assortative level 

suggests the method of shuffling in temporal networks will 

be a reasonable way to promote the cascade. In this 

framework, we adopt three measures to ensure the 

breaking and rewiring action are utilized properly. We 

generate a temporal network with random event sequence 

assigned to each link, with different event number in 
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sequences. The breaking and rewiring action happened on 

an assortative edge with the event sequence shifted and 

exchanged between edges at that time stamp. The memory 

window model is utilized to highlight the effect of the 

shuffling. At the microscopic level, we illustrate with 

Figure 1 how the proposed method effectively finds the 

trip link, while the tradition degree assortativity method 

fails. In simulations, the cascade level is measured as the 

average fraction of adopted nodes, thus allows for a 

comparison of the two different model on propagation 

coverage rate and spreading speed. The simple and 

effective feature of our model indicates the potential for 

further applications in related research fields. 
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